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Motivation

Experiments need to produce:
◦ correct and interpretable results
◦ knowledge that generalizes outside the specific experimental setting
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Generate Knowledge



Are Experiments in RL Sound? No.
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Issues with Experiments
Insufficient Trials / No quantification of uncertainty

◦ Henderson et al. 2018
◦ Colas et al. 2018, 2019
◦ Jordan et al. 2020
◦ Agarwal et al. 2021

No accounting for hyperparameter selection
◦ Dabney 2014
◦ Jordan et al. 2020

Differing Implementations
◦ Henderson et al. 2018
◦ Engstrom et al. 2020

Environment weighting favors one class of algorithm
◦ Balduzzi et al. 2018
◦ Jordan et al. 2020
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All issues are with benchmarking!



Goals of the Talk
Convince you to: 

1. Abandon benchmarking as the primary form of experimentation

2. Perform scientific testing experiments
◦ Reveals how an algorithm works

3. Reject papers with only benchmarking experiments
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Why is Benchmarking Hard?
Does algorithm X outperform algorithm Y on environments A, B, C

◦ Not a well-formed question.
◦ What does better performance mean?

How we construct the evaluation procedure determines what performance means
◦ Set of environments
◦ Metric: final performance, average over the agent’s lifetime
◦ Hyperparameter selection process
◦ Score normalization
◦ Environment weighting
◦ Training time

Specify the specific hypothesis you want to test, then design an evaluation procedure. 
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There is no correct procedure! Only 
different representations of performance. 



How to design an evaluation procedure
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Does not matter! (For this talk)



Problem With Benchmarking
1. For a sufficiently diverse set of environments there are multiple best algorithms

2. Performance of an algorithm has many confounding factors

3. Only says which algorithms work well and not why
◦ Claims as to why one algorithm is better are only a guess. 

4. Performance backed claims can lead to works based on misunderstood concepts.

We need to know what makes an algorithm successful or not to build better algorithms. 
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Benchmarking Leads to 
Misunderstandings
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Benchmarking Leads to 
Misunderstandings: Distribution RL
Value Predictions

◦ G! = ∑"#$ 𝛾"𝑅%&"
◦ Mean prediction: 𝑞 𝑠, 𝑎 ≈ 𝐸 𝐺%| 𝑆% = 𝑠, 𝐴% = 𝑎
◦ Categorical prediction 𝑞' 𝑠, 𝑎 ≈ Pr 𝐺 ∈ 𝑧' , 𝑧'&(
◦ New algorithm C51 (Bellemare et al. 2017)

Motivation 
◦ Better approximation of value
◦ More stable learning
◦ Mitigate the effects of learning from a nonstationary policy
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Benchmarking Leads to 
Misunderstandings: Distribution RL
Experiments:

◦ Vary the expressivity of the distribution to see 
how much it impacts performance

◦ Check for State-of-the-art performance!

Claims (paraphrasing):
◦ More expressive distribution always increases 

performance
◦ State-of-the-art performance

No substantiation of the motivation
◦ Implicitly assumed true because of good 

performance
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New Distributional RL Algorithms
Quantile Regression DQN (Dabney et al. 2018a)

◦ New distribution representation

Implicit Quantile Networks (Dabney et al. 2018b)
◦ More expressive quantile approximation

Fully parameterized Quantile Function (Yang et al. 2019)
◦ More expressive quantile approximation

Distributed Distributional DDPG (Barth-Maron et al. 2018)
◦ Distributional critic 
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All cite superior performance of distributional RL as 
reasons for continued development. 



Misunderstood Concept
Is distributional value representation actually important for good performance?

Lyle et al. (2018) showed
◦ Distributional RL only has benefits for neural networks 
◦ Worse for Tabular and Linear representations 

Dabney et al. (2021) suggested that
◦ Distributonal RL learns representations that are better able to predict future value functions

Better representation learning is likely the source of any performance benefit. 
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These insights do not come from benchmarking experiments!



Alternative Experiments
Controlled experimentation to understand how an algorithm works

◦ Scientific testing (Hooker, 1995)

The goal is to produce insightful knowledge that generalizes beyond the specific test setting so 
that we can construct or select algorithms as to solve specific problems.
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Scientific Testing Example
The Mirage of Action-Dependent Baselines in Reinforcement Learning (Tucker et al., 2018)

∇𝐽 𝜃 = 𝐄 ∑!"# 𝛾!𝐺! !!" ln 𝜋 𝑆!, 𝐴!, 𝜃

/∇𝐽$ = ∑!"# 𝛾!(𝐺!−𝑣(𝑆!)) !!" ln 𝜋 𝑆!, 𝐴!, 𝜃

/∇𝐽$,& = ∑!"#𝛾!(𝐺!−𝑞(𝑆!, 𝐴!)) !!" ln 𝜋 𝑆!, 𝐴!, 𝜃 + 𝛾! !!"𝐄[𝑞 𝑆! 𝐴! 𝑆!

Claim that Var /∇𝐽$,& < Var /∇𝐽$ and estimators using /∇𝐽$,& have better performance
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Scientific Testing Example
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No baseline
Nonreducible 
sources

Optimal state baseline

Learned state and 
state-action baselines



Scientific Testing Example
Lessons learned:

1. Benchmarking led to misleading claims

2. Scientific testing revealed more insightful information
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Comparison of Experiment Styles
BENCHMARKING

1. Shows one algorithm outperforms other 
algorithms

2. The experiment is valuable only if the new 
method is better

3. Hard to design proper experiments with 
interpretable results.

SCIENTIFIC TESTING

1. Produce knowledge about how one 
algorithm works

2. Experiment is valuable regardless of the 
outcome

3. Need to be creative in designing 
experiments
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For Better Experiments
1. Stop using benchmarking to justify new algorithms

2. Start using scientific testing to teach each other how algorithms work

3. For real change we need to change reviewer expectations. 
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New Reviewing Criteria
Reject papers that only have benchmarking experiments:

◦ We do not conduct these correctly, so they have almost zero value
◦ Do not provide insights for future algorithm development

Reject papers that do not validate that design decisions were behaving as intended
◦ showing a distributional value representation leads to better approximation
◦ Showing the amount of variance reduction achieved by new control variates

Ignore reviews that ask for benchmark comparisons.
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Conclusion

21

Focus on generating knowledge 
not algorithms.



Questions?

Contact me: sjordan@ualberta.ca
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