Publications

publications by categories in reversed chronological order.

2024

  1. From Past to Future: Rethinking Eligibility Traces
    Dhawal GuptaScott M. Jordan, Shreyas Chaudhari, Bo Liu, Philip S. Thomas, and Bruno Castro da Silva
    In Proceedings of the AAAI Conference on Artificial Intelligence, 2024
  2. Goal-Space Planning with Subgoal Models
    Chunlok Lo, Kevin Roice, Parham Mohammad Panahi, Scott M. JordanAdam White, Gabor Mihucz, Farzane Aminmansour, and Martha White
    2024
  3. A New View on Planning in Online Reinforcement Learning
    Kevin Roice, Parham Mohammad Panahi, Scott M. JordanAdam White, and Martha White
    2024
  4. Position: Benchmarking is Limited in Reinforcement Learning Research
    Scott M. JordanAdam White, Bruno Castro da Silva, Martha White, and Philip S. Thomas
    In Proceedings of the 41st International Conference on Machine Learning, ICML, 2024
  5. The Cliff of Overcommitment with Policy Gradient Step Sizes
    Scott M. Jordan, Samuel Neumann, James E. KostasAdam White, and Philip S. Thomas
    Reinforcement Learning Journal, 2024

2023

  1. Robust Markov Decision Processes without Model Estimation
    Wenhao Yang, Han Wang, Tadashi Kozuno, Scott M. Jordan, and Zhihua Zhang
    2023
  2. Coagent Networks: Generalized and Scaled
    James E. KostasScott M. JordanYash Chandak, Georgios Theocharous, Dhawal Gupta, Martha White, Bruno Castro da Silva, and Philip S. Thomas
    2023
  3. Rigorous Experimentation For Reinforcement Learning
    Scott M. Jordan
    University of Massachusetts Amherst, 2023
  4. Behavior Alignment via Reward Function Optimization
    Dhawal GuptaYash ChandakScott M. JordanPhilip S. Thomas, and Bruno Castro da Silva
    In Proceedings of the Thirty-seventh Conference on Neural Information Process Systems, NeurIPS, 2023

2022

  1. Scientific Experimentation for Reinforcement Learning
    Scott M. Jordan
    Opinion Talk - Deep Reinforcement Learning Workshop at NeurIPS, Dec 2022

2021

  1. High Confidence Generalization for Reinforcement Learning
    James E. KostasYash ChandakScott M. Jordan, Georgios Theocharous, and Philip S. Thomas
    In ICML, Dec 2021
  2. Impact of changes in tissue optical properties on near-infrared diffuse correlation spectroscopy measures of skeletal muscle blood flow
    Miles F Bartlett, Scott M. Jordan, Dennis M Hueber, and Michael D Nelson
    Journal of Applied Physiology, Dec 2021

2020

  1. Evaluating the Performance of Reinforcement Learning Algorithms
    Scott M. JordanYash ChandakDaniel Cohen, Mengxue Zhang, and Philip S. Thomas
    In ICML, Dec 2020
  2. Towards Safe Policy Improvement for Non-Stationary MDPs
    Yash ChandakScott M. Jordan, Georgios Theocharous, Martha White, and Philip S. Thomas
    In NeurIPS, Dec 2020

2019

  1. Learning Action Representations for Reinforcement Learning
    Yash Chandak, Georgios Theocharous, James E. KostasScott M. Jordan, and Philip S. Thomas
    In ICML, Dec 2019
  2. ICTIR
    Learning a Better Negative Sampling Policy with Deep Neural Networks for Search
    Daniel CohenScott M. Jordan, and W. Bruce Croft
    In ICTIR, Dec 2019
  3. Classical Policy Gradient: Preserving Bellman’s Principle of Optimality
    Philip S. ThomasScott M. JordanYash Chandak, Chris Nota, and James E. Kostas
    CoRR, Dec 2019
  4. Evaluating Reinforcement Learning Algorithms Using Cumulative Distributions of Performance
    Scott M. JordanYash Chandak, Mengxue Zhang, Daniel Cohen, and Philip S. Thomas
    Fourth Multidisciplinary Conference on Reinforcement Learning and Decision Making (RLDM), Jul 2019

2018

  1. Distributed Evaluations: Ending Neural Point Metrics
    Daniel CohenScott M. Jordan, and W. Bruce Croft
    In ACM SIGIR - LND4IR Workshop, Jul 2018
  2. Using Cumulative Distribution Based Performance Analysis to Benchmark Models
    Scott M. JordanDaniel Cohen, and Philip S. Thomas
    Critiquing and Correcting Trends in Machine Learning NeurIPS Workshop, Dec 2018
  3. Learning to Use a Ratchet by Modeling Spatial Relations in Demonstrations
    Li Yang Ku, Scott M. Jordan, Julia Badger, Erik Learned-Miller, and Rod Grupen
    International Symposium on Experimental Robotics (ISER), Dec 2018